AGAP3 and Arf6 regulate trafficking of AMPA receptors and synaptic plasticity.

نویسندگان

  • Yuko Oku
  • Richard L Huganir
چکیده

During NMDA receptor-mediated long-term potentiation (LTP), synapses are strengthened by trafficking AMPA receptors to the synapse through a calcium-dependent kinase cascade following activation of NMDA receptors. This process results in a long-lasting increase in synaptic strength that is thought to be a cellular mechanism for learning and memory. Over the past 20 years, many signaling pathways have been shown to be involved in the induction and maintenance of LTP including the MAPK cascade. However, the crucial link between NMDA receptors and the signaling cascades involved in AMPA receptor trafficking during LTP remains elusive. In this study, we aimed to identify and characterize NMDA receptor signaling proteins that link NMDA receptor activation to downstream signaling pathways that lead to trafficking of AMPA receptors. We have identified a novel NMDA receptor interacting signaling protein, AGAP3. AGAP3 contains multiple signaling domains, a GTPase-like domain, a pleckstrin homology domain, and an ArfGAP domain, and exists as a component of the NMDA receptor complex. In addition, we found that AGAP3 regulates NMDA receptor-mediated Ras/ERK and Arf6 signaling pathways during chemically induced LTP in rat primary neuronal cultures. Finally, knocking down AGAP3 expression leads to occlusion of AMPA receptor trafficking during chemically induced LTP. Together, AGAP3 is an essential signaling component of the NMDA receptor complex that links NMDA receptor activation to AMPA receptor trafficking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the G...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

Functions of Kinesin Superfamily Proteins in Neuroreceptor Trafficking

Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate recept...

متن کامل

AMPA receptor trafficking: a road map for synaptic plasticity.

Most excitatory transmission in the brain is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA receptors). Therefore, the presence of these receptors at synapses has to be carefully regulated in order to ensure correct neuronal communication. Interestingly, AMPA receptors are not static components of synapses. On the contrary, they are co...

متن کامل

Subunit-specific trafficking mechanisms regulating the synaptic expression of Ca(2+)-permeable AMPA receptors.

AMPA receptors are the main excitatory neurotransmitter receptor in the brain, and hence regulating the number or properties of synaptic AMPA receptors brings about critical changes in synaptic transmission. Synaptic plasticity is thought to underlie learning and memory, and can be brought about by decreasing or increasing the number of AMPA receptors localised to synaptic sites by precisely re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 31  شماره 

صفحات  -

تاریخ انتشار 2013